Add Fault Protection to 4-20mA Loop Supply

This circuit provides flexible fault protection for a 4-20mA current loop. In addition, it includes circuitry for recovering digital signals (such as the HART protocol) imposed on the loop.

4-20mA current loops consist of a power source and current-measuring device at the control end, and a field transmitter that senses process-variable information (like temperature or pressure) and converts it to a current (Figure 1). Most $4-20 \mathrm{~mA}$ industrial loops are powered by 24 VDC , but that voltage can range from 12 V to 36 V . The loop voltage in older systems can be even higher.

Figure 1. Basic architecture of a 4-20mA current loop.
Many such applications require current limiting or fault protection or both. For example, a short circuit or other high-current fault in one of several loops powered by a single source can produce a power-supply failure that disables all transmitters powered by that source. Intrinsically safe loops, on the other hand, include a barrier module that limits current and voltage to the transmitter. Fault-protected sources can add another level of system safety. Setting a current limit on each loop lets you size the power supply accurately without over-specifying it.

Figure 2 shows one form of flexible fault protection for the 24VDC power supply of a $4-20 \mathrm{~mA}$ loop. Also included is circuitry for recovering a digital signal superimposed on that loop. U1 (a high-side current-sense amplifier with comparator and reference) senses the loop current in R1 as an $8-40 \mathrm{mV}$ voltage and amplifies it by 100 , producing an output-voltage range of 0.8 V to 4 V . That output ($\mathrm{V}_{\text {OUT }}$) can directly drive external meters, strip-chart recorders, and A/D converter inputs.

Figure 2. This circuit provides fault protection and digital-signal recovery for a 4-20mA current loop.

The selected fault-current trip point (for U1's internal comparator \#1) is set by the R2-R3 voltage divider at 0.6 V . Setting the trip point for a 50 mA fault, for instance, establishes the following relationship between R1 and R2:
$R 2 /(R 1+R 2)=0.6 \mathrm{~V} /\left(\left.R 1{ }^{*} 100^{*}\right|_{\mathrm{FAULT}}\right)==>\mathrm{R} 1=15.67^{*} \mathrm{R} 2$.
When faults occur, the COUT1 output assumes a high impedance and is pulled high by R10. The noninverting cascaded-transistor pair Q2-Q3 provides an interface to the high loop voltage while preserving a proper logic polarity for controlling the gate of Q1. Q1 is held in the OFF state until U1's comparator \#1 is reset by the pushbutton PB1 or other reset signal. (To disable this comparator's latched output, tie the RESET\# pin to ground.) Zener diode ZD1 protects Q1's gatesource junction from overvoltage.

U2 and associated circuitry can recover any digital information imposed on the 4-20mA loop current by modulation. The HART protocol, for instance, typically uses frequency-shift keying (FSK) between 1200 Hz and 2400 Hz to modulate the loop current between $\pm 0.5 \mathrm{~mA}$ levels. (For this circuit, the modulated signal at $\mathrm{V}_{\text {OUT }}$ (pin 2 of U 1) is $\pm 0.1 \mathrm{~V}$.) $\mathrm{V}_{\text {OUT }}$ from U 1 is capacitively coupled to U2 and amplified by that device to recover such digital signals.

U1 includes a second comparator with inverting input, which can be used to cancel the inversion in U2's digital-signal output. Though not essential, this comparator output (COUT2) can also (as shown) present the recovered digital signal as a clean rectangular waveform for driving external

circuitry.

More Information

MAX4322: QuickView -- Full (PDF) Data Sheet -- Free Samples
MAX4375: QuickView -- Full (PDF) Data Sheet -- Free Samples

